This page documents the language specification for the azure package. If you're looking for help working with the inputs, outputs, or functions of azure resources in a Pulumi program, please see the resource documentation for examples and API reference.
machinelearning¶
This provider is a derived work of the Terraform Provider distributed under MPL 2.0. If you encounter a bug or missing feature, first check the pulumi/pulumi-azure repo; however, if that doesn’t turn up anything, please consult the source terraform-providers/terraform-provider-azurerm repo.
- class
pulumi_azure.machinelearning.AwaitableGetWorkspaceResult(id=None, location=None, name=None, resource_group_name=None, tags=None)¶
- class
pulumi_azure.machinelearning.GetWorkspaceResult(id=None, location=None, name=None, resource_group_name=None, tags=None)¶ A collection of values returned by getWorkspace.
id= None¶The provider-assigned unique ID for this managed resource.
location= None¶The location where the Machine Learning Workspace exists.
A mapping of tags assigned to the Machine Learning Workspace.
- class
pulumi_azure.machinelearning.Workspace(resource_name, opts=None, application_insights_id=None, container_registry_id=None, description=None, friendly_name=None, identity=None, key_vault_id=None, location=None, name=None, resource_group_name=None, sku_name=None, storage_account_id=None, tags=None, __props__=None, __name__=None, __opts__=None)¶ Manages a Azure Machine Learning Workspace
import pulumi import pulumi_azure as azure current = azure.core.get_client_config() example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West Europe") example_insights = azure.appinsights.Insights("exampleInsights", location=example_resource_group.location, resource_group_name=example_resource_group.name, application_type="web") example_key_vault = azure.keyvault.KeyVault("exampleKeyVault", location=example_resource_group.location, resource_group_name=example_resource_group.name, tenant_id=current.tenant_id, sku_name="premium") example_account = azure.storage.Account("exampleAccount", location=example_resource_group.location, resource_group_name=example_resource_group.name, account_tier="Standard", account_replication_type="GRS") example_workspace = azure.machinelearning.Workspace("exampleWorkspace", location=example_resource_group.location, resource_group_name=example_resource_group.name, application_insights_id=example_insights.id, key_vault_id=example_key_vault.id, storage_account_id=example_account.id, identity={ "type": "SystemAssigned", })
- Parameters
resource_name (str) – The name of the resource.
opts (pulumi.ResourceOptions) – Options for the resource.
application_insights_id (pulumi.Input[str]) – The ID of the Application Insights associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
container_registry_id (pulumi.Input[str]) – The ID of the container registry associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
description (pulumi.Input[str]) – The description of this Machine Learning Workspace.
friendly_name (pulumi.Input[str]) – Friendly name for this Machine Learning Workspace.
identity (pulumi.Input[dict]) – An
identityblock defined below.key_vault_id (pulumi.Input[str]) – The ID of key vault associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
location (pulumi.Input[str]) – Specifies the supported Azure location where the Machine Learning Workspace should exist. Changing this forces a new resource to be created.
name (pulumi.Input[str]) – Specifies the name of the Machine Learning Workspace. Changing this forces a new resource to be created.
resource_group_name (pulumi.Input[str]) – Specifies the name of the Resource Group in which the Machine Learning Workspace should exist. Changing this forces a new resource to be created.
sku_name (pulumi.Input[str]) – SKU/edition of the Machine Learning Workspace, possible values are
Basicfor a basic workspace orEnterprisefor a feature rich workspace. Defaults toBasic.storage_account_id (pulumi.Input[str]) – The ID of the Storage Account associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
tags (pulumi.Input[dict]) – A mapping of tags to assign to the resource. Changing this forces a new resource to be created.
The identity object supports the following:
principal_id(pulumi.Input[str]) - The (Client) ID of the Service Principal.tenant_id(pulumi.Input[str]) - The ID of the Tenant the Service Principal is assigned in.type(pulumi.Input[str]) - The Type of Identity which should be used for this Disk Encryption Set. At this time the only possible value isSystemAssigned.
application_insights_id: pulumi.Output[str] = None¶The ID of the Application Insights associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
container_registry_id: pulumi.Output[str] = None¶The ID of the container registry associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
description: pulumi.Output[str] = None¶The description of this Machine Learning Workspace.
friendly_name: pulumi.Output[str] = None¶Friendly name for this Machine Learning Workspace.
identity: pulumi.Output[dict] = None¶An
identityblock defined below.principal_id(str) - The (Client) ID of the Service Principal.tenant_id(str) - The ID of the Tenant the Service Principal is assigned in.type(str) - The Type of Identity which should be used for this Disk Encryption Set. At this time the only possible value isSystemAssigned.
key_vault_id: pulumi.Output[str] = None¶The ID of key vault associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
location: pulumi.Output[str] = None¶Specifies the supported Azure location where the Machine Learning Workspace should exist. Changing this forces a new resource to be created.
name: pulumi.Output[str] = None¶Specifies the name of the Machine Learning Workspace. Changing this forces a new resource to be created.
resource_group_name: pulumi.Output[str] = None¶Specifies the name of the Resource Group in which the Machine Learning Workspace should exist. Changing this forces a new resource to be created.
sku_name: pulumi.Output[str] = None¶SKU/edition of the Machine Learning Workspace, possible values are
Basicfor a basic workspace orEnterprisefor a feature rich workspace. Defaults toBasic.
storage_account_id: pulumi.Output[str] = None¶The ID of the Storage Account associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
A mapping of tags to assign to the resource. Changing this forces a new resource to be created.
- static
get(resource_name, id, opts=None, application_insights_id=None, container_registry_id=None, description=None, friendly_name=None, identity=None, key_vault_id=None, location=None, name=None, resource_group_name=None, sku_name=None, storage_account_id=None, tags=None)¶ Get an existing Workspace resource’s state with the given name, id, and optional extra properties used to qualify the lookup.
- Parameters
resource_name (str) – The unique name of the resulting resource.
id (str) – The unique provider ID of the resource to lookup.
opts (pulumi.ResourceOptions) – Options for the resource.
application_insights_id (pulumi.Input[str]) – The ID of the Application Insights associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
container_registry_id (pulumi.Input[str]) – The ID of the container registry associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
description (pulumi.Input[str]) – The description of this Machine Learning Workspace.
friendly_name (pulumi.Input[str]) – Friendly name for this Machine Learning Workspace.
identity (pulumi.Input[dict]) – An
identityblock defined below.key_vault_id (pulumi.Input[str]) – The ID of key vault associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
location (pulumi.Input[str]) – Specifies the supported Azure location where the Machine Learning Workspace should exist. Changing this forces a new resource to be created.
name (pulumi.Input[str]) – Specifies the name of the Machine Learning Workspace. Changing this forces a new resource to be created.
resource_group_name (pulumi.Input[str]) – Specifies the name of the Resource Group in which the Machine Learning Workspace should exist. Changing this forces a new resource to be created.
sku_name (pulumi.Input[str]) – SKU/edition of the Machine Learning Workspace, possible values are
Basicfor a basic workspace orEnterprisefor a feature rich workspace. Defaults toBasic.storage_account_id (pulumi.Input[str]) – The ID of the Storage Account associated with this Machine Learning Workspace. Changing this forces a new resource to be created.
tags (pulumi.Input[dict]) – A mapping of tags to assign to the resource. Changing this forces a new resource to be created.
The identity object supports the following:
principal_id(pulumi.Input[str]) - The (Client) ID of the Service Principal.tenant_id(pulumi.Input[str]) - The ID of the Tenant the Service Principal is assigned in.type(pulumi.Input[str]) - The Type of Identity which should be used for this Disk Encryption Set. At this time the only possible value isSystemAssigned.
translate_output_property(prop)¶Provides subclasses of Resource an opportunity to translate names of output properties into a format of their choosing before writing those properties to the resource object.
- Parameters
prop (str) – A property name.
- Returns
A potentially transformed property name.
- Return type
str
translate_input_property(prop)¶Provides subclasses of Resource an opportunity to translate names of input properties into a format of their choosing before sending those properties to the Pulumi engine.
- Parameters
prop (str) – A property name.
- Returns
A potentially transformed property name.
- Return type
str
pulumi_azure.machinelearning.get_workspace(name=None, resource_group_name=None, opts=None)¶Use this data source to access information about an existing Machine Learning Workspace.
import pulumi import pulumi_azure as azure existing = azure.machinelearning.get_workspace(name="example-workspace", resource_group_name="example-resources") pulumi.export("id", azurerm_machine_learning_workspace["existing"]["id"])
- Parameters
name (str) – The name of the Machine Learning Workspace exists.
resource_group_name (str) – The name of the Resource Group where the Machine Learning Workspace exists.